Seasonal contrast of nighttime turbulent carbon flux at the LBA pasture/agricultural site

Otávio C. Acevedo, Osvaldo L. L. Moraes
Universidade Federal de Santa Maria, Santa Maria, RS, Brazil

David R. Fitzjarrald, Ricardo Sakai, Matthew Czicowski, L. E. Medeiros
Atmospheric Sciences Research Center, Albany, NY, USA

Larry Mahrt
Oregon State University, Corvallis, OR, USA
Objective: To show that usually discarded turbulent data from weak mixing conditions, can provide useful information regarding nocturnal surface fluxes.

Methodology: Recent studies by Vickers and Mahrt show that turbulent fluxes in very stable conditions can be found through the multiresolution decomposition.
We will look at data from the pasture/agricultural site from the LBA project:
• Deforestation leads to enhanced radiative loss at the surface, forming a strongly stable layer at nighttime;
• Nocturnal turbulent mixing is extremely reduced at the site.

(Sakai et al., 2004)

$u_* < 0.2 \, \text{m/s}$ during 98% of the time;
$u_* < 0.08 \, \text{m/s}$ during 82% of the time;
So, let’s apply the multiresolution decomposition to the very stable data from the site

- Data from 83 nights from wet season 2001 and 48 nights from dry season 2001;
- The technique was applied to initial windows of 13 minutes;
- The windows were then shifted by 1 minute, and the process was repeated.
- The data were classified by the turbulent intensity, determined by σ_w
Turbulent flux X other fluxes
Overall behavior – WET SEASON
For comparison, the sensible heat fluxes:
What happens in the most stable cases?
Is the scale of the carbon transport different than that for sensible heat?
Does it mean that carbon is transported by different eddies than those transporting heat?
How do fluxes depend on turbulent intensity?

Carbon dioxide flux

Sensible heat flux

CO₂ fluxes

Sensible heat fluxes
Accounting for storage:
Drainage?

Turbulence profiles

\[
\left(\sigma_u^2 + \sigma_v^2\right)^{\frac{1}{2}} \text{ (ms}^{-1}\text{)}
\]

Legend:
- \(\circ\): 0.009 to 0.03
- \(\triangle\): 0.03 to 0.041
- \(+\): 0.041 to 0.055
- \(\times\): 0.055 to 0.081
- \(\diamond\): > 0.081
Overall behavior – DRY SEASON
Turbulence profiles – DRY SEASON
CO₂ profiles

Dry season

Noite 17/18, Novembro 2003 – Km77

Temperatura Potencial | Umidade Específica | Concentração de CO₂

Wet season

Noite 23/24, Novembro 2003 – Km83

Temperatura Potencial | Umidade Específica | Concentração de CO₂
Conclusion

- Fluxes that are neglected due to lack of turbulence can be found if the proper averaging procedures are applied;

- \(\text{CO}_2 \) fluxes happen at larger scales than sensible heat fluxes;

- There is evidence that drainage is responsible for most of the \(\text{CO}_2 \) transport at very stable conditions;

- In the most stable cases, including dry season, negative fluxes are observed at scales larger than the turbulent flux.