TG-01 Group Augmented Abstract

Meteorology and C & N Transport for LBA-Ecology

Robert B. Chatfield -- NASA Ames Research Center
Maria AssuncŃo Faus Silva Dias -- University of SŃo Paulo (USP)

Hypotheses and Cautions

We assert several points about the atmospheric environment of LBA-ECO, which appear reasonable. Only newly funded work under LBA-ECO will allow us to test these and to aid the ecological community with their interpretation of atmospheric concentrations of CO2, CO, CH4, N20, and aerosols, as well as assessments of carbon loss from Amaz˘nia.

1. The atmospheric environment of the LBAE study area will be affected by inflow of outside air in the lower troposphere, and the inflow will be greatest during the rainiest seasons. These will at least dilute the concentrations of trace species like nitrous oxide, methane, isoprene carbon monoxide natural particulate matter, etc. The rainy season period will also be the period of the most dramatic vertical stirring, e.g., by cloud downdrafts, with similar effects. See also the MTPE proposal, attached, especially the front page, showing strong effects even during the dry season.

2. Composition of the inflow air is complex. For example, in March and April, there is inflow of air from clean ocean regions to portions of Amaz˘nia. However, significant inflow from northernmost South America and the Caribbean, and also more southern regions of South America occurs. All these regions have burning or industrial pollution during these times. The largest potential inflow of complex, polluted, air is, however, from nearby subSaharan Africa, which is at the height of its burning season. As the preliminary work of the citation indicates, these effects may be sporadic and poorly quantified at this point, but are not to be neglected.

3. The loss of isoprene and other organics from the Amaz˘nian system provides a gross loss of C from the system, 1.5% to 4% of NPP. Such percentage affects the perception of an agrading ecosystem when periods of 25 to 100 years are considered. CO may constitute 15% to 60% of the "final" products of isoprene oxidation; here, final means that the material can escape the Amaz˘nian region. Other species may rapidly stick to surfaces or be rained out, possibly somewhat downwind. Measurements of CO and organic trace gases in CLAIRE and organic aerosols and condensibles by Paulo Artaxo at various times will inform our estimates of C loss from Amaz˘nia.

Abstract of Proposed Work

We propose to:

1. Compare and improve simulations of the chemical composition of the troposphere over Amaz˘nia as made by American and Brazilian scientists using meteorological mesoscale and larger scale models. USP and Ames scientist have selected past periods of intensive measurement for intercomparison (e.g.. SCARB and ABLE periods). One focus of this work is to compare quantitatively the effects of parameterizations of planetary boundary layer and cloud venting.

2. Allow inferences of the perturbation of the Amaz˘nia lowermost troposphere by outside influences. We will use incisive tracer simulations to highlight expected perturbations on methane, nitrous oxide. Since effects on these long-lived species will be small, and small concentration differences due to transport may nevertheless be used to infer large effects, we will also simulate carbon monoxide, smoke aerosol mass, and perhaps NO / N02. In addition to the climatic interest in these species, they highlight exchange processes in great detail, and some of these species may be remotely sensed.

3. As measurements accumulate during the LBA period, we expect we can start studies describing the role of isoprene, other non-methane arboreal emissions, and their products on the carbon balance of Amaz˘nia. These studies serve two purposes: they help define the CO export from that rainforest region to the world during seasons of low worldwide burning, and they affect the Amaz˘nian C and N budgets at a significant level. This level of funding does not allow chemical mechanistic studies of isoprene's return to the ecosystem, but it does allow:


Last Updated: September 1998