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I. Introduction: Two sub-questions

IT. Prior findings from an eddy flux study:
disturbance-induced carbon loss in old-
growth forest?

ITI. A preliminary test of predictions from
prior findings
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LBA project near Santarem: Controls on / B
Carbon Balance in the Tapajés National
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H Methods

______

58 m: Eddy flux (1) Eddy Flux: 64m tall tower
g at Kmé67 in Tapajos forest

Profile (2) Biometry: ~3000 trees
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Prior findings 1: eddy flux measurement show net loss
of C in Tapajos National forest of Amazonia,
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Prior findings 2: Carbon fluxes to biomass and dead wood

- suggests C-loss is transient consequence

of disturbance
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- suggests C-loss is transient consequence

Prior findings 2: Carbon fluxes to biomass by size-class

of disturbance
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Observation 2:

Demographic shift:

The increase in flux
to biomass is
in the smaller size
classes
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Predictions for continued observations
following disturbance
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Predictions for continued observations
following disturbance
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Predictions for continued observations
following disturbance
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Predictions for continued observations

following disturbance
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Predictions for continued observations
following disturbance
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ITI. Test of predictions with
new observations



Test of predictions
Cumulahve km67 Carbon Flux 2001-2005
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Test of predictions
Cumulahve km67 Carbon Flux, 2001-2005
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Test of predictions

Cumulative km67 Carbon Flux, 2001-2005
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Test of predictions:

Trends in Annual sums of carbon flux

Component fluxes
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Respiration (MgC/ha/yr)

Precip controls short-term,
but not long-term, integrated Resp flux
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Test of predictions: Forest Demography (a):
Live biomass pool shifts toward balance

Carbon fluxes to Live Biomass at km 67
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Test of predictions: Forest Demography (c):

"Grow-in" shifts tree growth from
smaller to larger size-classes

annual growth increment (MgC) by size class
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Summary

Preliminary pattern confirms disturbance
recovery hypothesis:
(1) for eddy flux predictions:

- Net ecosystem exchange shifts from source
towards sink

- Due in part to decline in ecosystem respiration
(2) for demographic predictions:
- Live biomass pool shifts towards balance

- G6row-in shifts growth fluxes towards larger size
classes




TV. Conclusions

(1) Multiple measures (demography, component
fluxes, net C-balance) can be integrated to
detect and track whole-forest response to
disturbance

(2) Detailed quantification of:
- Flux magnitudes & Response times
- demographic state
allows fests of models of important forest
dynamics

(3) We are making progress on understanding
key factors for predicting large-scale
forest carbon balance
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