ID #
13.7-P

Science Team:

Willlam Salas, Applied Geosolutions, U.S. Remote Sensing Lead

Scaling secondary forest characteristics to time series of Landsat-derived reflectances

Mark Ducey, University of New Hampshire, U.S. Principal Investigator
Diogenes Alves, Instituto Nacional de Pesquisas Espacials, Brazilian Principal Investigator

Daniel Zarin, University of Florida, U.S. Ecology Leade
Jliaguo QI, Michigan State University, Co-investigator

Joanna Tucker, University of Florida, Biological Scientist
Lucas Fortini, University of Florida, Brological Scientist

Stephen Hagen, University of New Hampshire, Research Scientist — Remote Sensing

ABSTRACT

As part of an integrated study aimed at modeling and mapping forest regrowth potential for the Amazon region, we
conducted extensive field measurements of secondary forest structure in three areas across Amazonia and collected
time series of remote sensing data from these same areas. We present results linking these field measurements and a
time series of Landsat reflectance data. We compare the rates of succession of the stands by examining the stand
level trajectories of reflectance over time. We also explore the feasibility of establishing a structural index created from
the Landsat observations that is related to a combination of field-measured structural attributes. The thick and variable
atmospheric conditions complicate the creation of a standard time series of reflectances from the Landsat data.
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Figure 1: Composite of MODIS reflectances (R-SWIR, G-NIR, B-RED) taken in 2001 showing the northern part of South America. The
three field campaigns are labeled in red (Alto Paraiso, Rondonia (AP), Ruropolis, Para (RU), and Sao Francisco, Para (SF).
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FIELD DATA COLLECTION

We collected structure field data from 36 secondary forest stands in two levels of detail, high intensity/ extensive detalil
(category A) and moderate intensity/moderate detail (category B). The following figures illustrate data collected in one
Category A stand, a 20-year old capoeira located in Para. From left to right. stem map of all trees >5cm DBH in a
60x60m area (shags shown in red); crown map of trees >5cm DBH (solid crowns measured; dotted crowns estimated
by regression/imputation), and vertical crown profiles. Field data also include spatially explicit density and size
measures on trees <bcm DBH, vines and lianas, herbaceous layer vegetation, and downed woody material.
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Figure 4

Regrowing Forest Biomass
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Figure 5: Stand age vs. accumulated above ground biomass as measured in the field. While it is clear that biomass generally increases
with stand age, other factors have a significant influence on the rate of biomass accumulation after deforestation and abandonment.

DEVELOPING RELATIONSHIPS BETWEEN OPTICAL REMOTE SENSING DATA AND FOREST STRUCTURE

Approach: While previous studies indicate that several successional age classes can be mapped, we are using a
different approach by developing coupled estimates of successional stage and regrowth rate. This enables us to
use remote sensing technologies to assess not only the current stage of a successional stand but also the dynamics
and future of regional biomass and carbon accumulation. The basis of our approach is the combination of multi-
temporal land cover change data with multi-temporal spectral trajectories. Based on the multi-temporal analysis of
annual TM data from late 1980s to 2003 we have mapped land use patterns, secondary growth persistence, and
secondary growth stand age. Rates of succession are mapped using several multi-temporal spectral indices to
enhance sensitivity at different stages of succession.

MODEL: We used a nonlinear regression technique (i.e. artificial neural network) to identify relationships between
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Figure 2: Landsat data from Rondonia, highlighting the Alto Paraiso study sites. The 30m reflectance data (a. R-SWIR, G-NIR, B-RED) are useful
for classifying landcover. b. shows land cover change in the area near Alto Paraiso between 1999 and 2000. The change is estimated

by classifying the 1999 and 2000 images separately, then overlaying them.

Atmospheric normalization is a critical challenge in developing time series of reflectances and spectral indices. We

use an empirical process to convert TOA radiance to surface reflectance.

Initially, we derived 2001 surface

reflectance at the ETM scale using ETM radiance data and MODIS surface reflectance acquired the same day.
Then, using the ETM 2001 image as a base, we normalize all other images in the time series band by band. The
normalization is done using 295 forest stands near the field sites that were selected because a) they appear 1o be
mature forest in the 1988 image and remain forest throughout our study and, b) they have low within stand
spectral variance). This atmospheric correction process removes most of the “noise” generated by variability in the
atmosphere, but not all of it. As Figure 6 shows, reflectances from areas known to be forest still vary significantly,
especially in the visible wavelengths.
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Figure 3: Time series of
reflectance in the RED
band for five mature
forest stands (a.) and
three young secondary
stands (b.) after
atmospheric correction.
The error bars are
created using the RMSE
from the linear model

(c.).

the 2001 remote sensing data and field measure forest structure data. By employing a stepwise regression
technique coupled with an n-fold validation, we identified the optimal model as defined by the lowest out-of-sample
error. This model uses as input the GRN, NIR, and SWIR1 bands together with the standard deviation of the NIR
band as input to predict three structural variables: trees per hectare, standard deviation of dbh, and crown
competition factor.

Trees per hectare: Modeled vs. Dbserved Standard deviation of diameter: Modeled vs. Observed Crown competition factor: Modeled vs. Observed
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Figure 6: The multiple nonlinear regression model produces out-of-sample estimates (i.e. n-fold validation) of structural variables that measure up well
with field observed structure. The rmse and r2 metrics for the three structural variables are as follows:

R? RMSE
tph 075 13263
sdd .58 (.56
ccf (.34 142

MULTITEMPORAL ANALYSIS

We extended our single date analysis to a 12 image time
series of atmospherically corrected reflectances covering
the period between 1988 and 2001 for the area around the
city of Ruropolis, Para. By extending the secondary forest
structure model fit to the 2001 remote sensing data, we
estimated structural characteristics over time for 8091
secondary forest plots of at least on hectare in the region
(Figure 6, red pixels). These secondary forest plots were
chosen using the classified 12 layer land cover transition
matrix. Ve analyzed plots that were classified as
secondary forest for at least five consecutive years. We
examined the predicted structural characteristics against
time since abandonment as well as against time since
original clearing (TSOC).

Figure 7: False color composite of the Ruropolis, Para region overlaid
with the secondary forest stands of at least one hectare (red) .
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Figure 8: Plots of mean structural attributes versus the age of the secondary forest, with plus and minus a single standard deviation. We see that, as the
secondary forest ages, the number of trees per hectare generally decreases (a) and the standard deviation of the dbh generally increases (b). Also, the
stand’s crown competition factor decrease with age (c). While these results are expected, we also note the considerable amount of noise associated with
the means. These high standard deviations suggest that secondary forest age isn’t the only factor controlling our estimates of structure.
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Figure 9: Other possible factors controlling secondary forest structural development (and our estimates of it) include intensity of use prior to
abandonment, presence or absence of burning, edaphic conditions, climate conditions, and residual cloud contamination in the remote sensing data.
We use time since original clearing (TS0OC) as a proxy for intensity of use, arguing that a plot of secondary forest that was originally cleared 10 years
ago is likely to have undergone more intense use than a plot of the same age that was originally cleared 5 years ago. The three plots show the
estimates of structure for all 6 year old secondary forest plots against the years since original deforestation. We see slight trends masked by large
uncertainties. Trees per hectare (a) and crown competition factor (¢) decrease with our proxy for more intense use, while standard deviation of dbh (b)
increases with increasing intensity of use.

SUMMARY

We present results from a project that combines an intense field campaign with an innovative method of modeling
secondary forest structure to identify controlling factors in the regeneration of these forests. Non-linear regression
using neural networks allows us to more accurately capture the relationship between optical remote sensing data and
fleld measured forest structure. The land cover transition histories assembled from multi-year stacks of classified
Landsat imagery and their associated reflectance data provide a unigue tool for following the regeneration pathways
of thousands of secondary forest stands. This study provides more evidence that structure doesn’'t change uniformly
with age; that is, factors other than just time since abandonment determine the structural properties of secondary
forests. Some of these factors include edaphic conditions, climate, intensity of use, and presence of fire (Brown et al.
1992). Furthermore, this study establishes a method of mapping secondary forest structure over large regions. By
adding information layers related to the controlling factors {i.e. soil maps, precipitation data, efc.), we will guantify the
effect of these factors on secondary forest structure during regeneration.
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