
Do plant species influence soil gas 

fluxes in tropical forests?

Joost van Haren1, Raimundo Cosme de Oliveira2, Scott Saleska1, 

and Michael Keller3

1University of Arizona, 2Embrapa Occidental, 3University of New Hampshire



Potential implications

Species composition of forests is sensitive to changes in 

precipitation and nutrient inputs

Species associated fluxes could help assess spatial variability of 

soil gas fluxes

Species dependent effects on soil gas fluxes could lead to a better 

understanding of plant-soil interactions
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Field flux measurements
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QVVochysia maxima (Quaruba verdadeira, E) 

PICaryocar villosum (Piquiá, E) 
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Scheffleria morototoni (Morototo, P)

Astronium lecointei (Aroeira, C)

Pouteria reticulata (Abiu, C)

Sclerolobium chrysophyllum (Tachi vermelho, C)

Pseudopiptadenia psilostachya (Fava folha fina, E)

Carapa guianensis (Andiroba, C)

Manilkara huberi (Maçaranduba, E)

Lecythis lurida (Jarana, E)

Erisma uncinatum (Quarubarana, E) 

Couratari stellata (Tauarí, E)

Chamaecrista xinguensis (Coração de negro, C) 

Bertholletia excelsa (Castanha de para, E)

Tree species 

(C = canopy, E = emergent, P = pioneer)

Field measurements
•Select large (>35cm DBH) 

individuals randomly or whole 

population

•Gas flux 

•air T, soil T, and pH

•0-3 cm BD and %WFPS

•DBH tree, DBH and species of all 

trees > 1 cm within a 3 m radius
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Are CO2 fluxes different by species?
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Are N2O fluxes different by species?

Km 67 site
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Site to site variability
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Site characteristics
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Can water content explain the difference?
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N2O flux related to annual tree N uptake* 

at km 67, 72, 83, and 117.

y = 23.1x
-0.52

R
2
 = 0.86

y = 19.0x
-0.33

R
2
 = 0.60

y = 49.4x
-0.49

R
2
 = 0.95

0

50

100

150

0 0.5 1 1.5 2

Annual N uptake kg-N y
-1

N
2
O

 f
lu

x
 �� ��

g
-N

 m
-2

 h
-1

Legume

Legumes

Piquia

Pioneer

Annual N uptake kg-N y-1

N
2
O

 f
lu

x
 µµ µµ

g
-N

 m
-2

h
-1

* Calculated from mean growth rate (repeated 

DBH measurements and, at km 67, 

dendrometry bands), Amazon tree allometry
(Chambers et al. 2001)  and foliar N content 

(Ehleringer et al. Bejaflor database).



Conclusions

• Plant species do not affect CO2 fluxes, though 
fluxes close to large trees are 30% higher than 
>10m away from trees

• Plant species do influence soil N2O fluxes 

• Vegetation composition and measured physio-
chemical  cannot explain observed site-to-site 
differences



From tree fluxes to forest flux
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Future directions

• Use the fluxes and species composition to 
calculate overall forest fluxes
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0

30

60

90

120

150

30 40 50 60 70 80

0

50

100

150

200

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00

50

100

150

200

20 40 50 60 7040 60 800

N
2
O

 µ
g
-N

 m
-2

h
-1

Annual growth rate (kg y-1) %WFPS



100

200

300

400

500

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

100

200

300

400

500

24 25 26 27



3.4

3.8

25

26

0.6

1

1.4

40

60

200

300

50

150

20 40 60 2 3 6 8

Mean(pH)

3.4 3.8 4.2

Mean(Soil T)

25 26

Mean(BD 0.1
km67 corr)

.6 .8 1 1.2

Mean(%WFPS
km67 BD corr)

40 60

Mean(CO2)

200 300

Mean(N2O)

50 150

Potential factors influencing 
soil CO2 and N2O fluxes

Annual growth

(kg) d (m)
ln(Total

Biomass) pH
Soil T 

(oC)

BD

(g cm-3) %WFPS

CO2

mg-C m-2 h-1

N2O

µg-N m-2 h-1

Biological parameters Physio-chemical parameters



20

50

80

110

180

210

240

270

N
2
O

 f
lu

x
 µ

g
-N

 m
-2

h
-1

Clay-rich Sandy

Site to site variability

BP 72 83 117 TB67

C
O

2
fl

u
x
 m

g
-C

 m
-2

h
-1

B
D

 (
g
 c

m
-3

),
 %

N
, 

p
H

%
S

M
, 

%
W

F
P

S

a****

a

b* ab

ab****

c c
bc

a a



150

170

190

210

230

250

0 2 4 6 8 10 12

F
o
re

s
t 

C
O

2
fl
u
x
 (

m
g
-C

 m
-2

h
-1

)

Radius tree sphere of influence (m)

>10m from 

large trees
<3m from 

large trees

Tree influence sphere and forest flux 

� fixed influence 

sphere

�influence sphere 

scales with DBH

Each point is calculated based on total influence sphere area by species and mean flux. Area of 
species not measured were pooled and multiplied by the overall mean species flux.



10 km

Km 67

Km 72
T3

T2

Km 117
T6

T7

Km 83

Belterra

plantation

TB

AN AR CO CP JA MA PI QV TV

C
O

2
(m

g
-C

 m
-2

h
-1

)

100

500

300

700

900 BP

C
O

2
(m

g
-C

 m
-2

h
-1

)

100

500

300

700

900 km 67

>10m from 

large trees

A
B

A
R

C
N

C
P JA

M
A P
I

Q
V

T
V

F
F

F

Q
U

T
A

M
O

AB AN FFF JA MA PI TA TV

C
O

2
(m

g
-C

 m
-2

h
-1

)

100

500

300

700

900

Site CO2 fluxes by species
C

O
2

(m
g

-C
 m

-2
h

-1
)

100

500

300

700

900 km 72

km 83

Km117+TB

C
O

2
(m

g
-C

 m
-2

h
-1

)

100

500

300

700

900

AB AN FFF JA MA PI TA TV

AN AR FFF JA MA QV TAQU



10 km

Km 67

Km 72
T3

T2

Km 117
T6

T7

Km 83

Belterra

plantation

TB

AN AR CO CP JA MA PI QV TV

N
2
O

 (
µ

g
-N

 m
-2

h
-1

)

100

300

200

400

500
BP

km 67

>10m from 

large trees

A
B

A
R

C
N

C
P JA

M
A P
I

Q
V

T
V

F
F

F

Q
U

T
A

M
O

AB AN FFF JA MA PI TA TV

Site N2O fluxes by species

km 72

km 83

Sandy

C
O

2
(m

g
-C

 m
-2

h
-1

)

100

500

300

700

900

AB AN FFF JA MA PI TA TV

AN AR FFF JA MA QV TAQU

N
2
O

 (
µ

g
-N

 m
-2

h
-1

)

100

300

200

400

500

N
2
O

 (
µ

g
-N

 m
-2

h
-1

)

100

300

200

400

500

N
2
O

 (
µ

g
-N

 m
-2

h
-1

)

100

300

200

400

500



Species differences

• N2O fluxes higher close to Caryocar villosum
(Caryocaraceae) than Erisma uncinatum and Vochysia

maxima (Vochysiaceae)

• Possible mechanisms:

– Root derived carbon is greater under C. villosum

• Test with sugar additions to soil

– Nutrient cycling between these plants is different

• C. villosum lacks the dense root mats that are found under many 

tropical tree species (including Vochysiaceae)

– Soil texture or moisture differences close to these tree species



Soil response to sugar additions
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NUE of Caryocaraceae and Vochysiaceae
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Conclusions



Plant species and Biogeochem cycling
• Trees are limited in growth by light and nutrient supply

– Growth severely hampered by light in understory, but in general trees 

>35 cm DBH are less affected

– Nutrient supply comes from soil and for N also from air, which makes N 

not a good indicator for tree soil use!

• Trees are main carbon source for micro-organisms

– Species are known to have different growth and photosynthetic 

efficiencies, NUE’s, and ability to fix N

– Litter quality and quantity differs between species, though litter mixing 

and roaming animals (termites) would probably reduce these 

differences in diverse forests over plantation settings.

• If there are differences then are these differences significant enough 
to influence the overall forest flux (Model based on different 
assumptions of sphere of influence of each tree based on size).
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N2O fluxes close to PI* (13321
25 µg-N m-2 h-1, geometric mean-SE

+SE), QU (425
6 µg-N m-2 h-1) and 

QV (376
8 µg-N m-2 h-1) were respectively 1.8 times greater, 1.8 and 2.1 times smaller than the 

overall mean (753
3 µg-N m-2 h-1, ANOVA: F13,324,=4.46, P<0.0001).  

* different from QU and QV at Tukey-Kramer α=0.0001.
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Proximal and distal controls on 

soil CO2 and N2O fluxes

• CO2

– Temperature

– Gas transport 

– Bulk density and %WFPS negative influence, soil texture as well

– Below ground carbon allocation

– Light environment trees and growth rate



• CO2
– Temperature

– Gas transport 
– Bulk density and %WFPS negative influence, soil texture as well

– Below ground carbon allocation
– Light environment trees and growth rate

• N2O
– Temperature

– Texture: influences %WFPS and O2 transport

– %WFPS: barrier for O2 transport 

– Precipitation: disturbance causing microbial lysing

– Labile carbon as food for denitrifiers, biomass allocation

– pH, which controls enzymatic processes and can suppress N2O 
reductase at low pH

– Competition with plants for N-forms

Proximal and distal controls on 

soil CO2 and N2O fluxes


