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Predictions for 2100:
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Flux             CO2 Warming
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Key factors driving model differences:
•Temperature sensitivity of soil respiration
•Drought-induced Dieoff of Amazon rainforest savanna
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What is the future of Amazon forests What is the future of Amazon forests 
under climate change?  under climate change?  

Forest? ... 

or Savanna? 



Amazônia 2050:  Forest or Savanna?  
Can we test the prediction?
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Amazônia 2050:  Forest or Savanna?  
Can we test the prediction?

Trigger: onset of semi-permanent drought (no biology)

Key mechanism: amplification of drought by forest physiological response to 
initial drying (lots of biology!):

Rain

Evapo-
transpiration

Prediction about today’s Amazon forest under current climate:  
evapotranspiration and whole-system photosynthesis should be reduced during dry 
periods (dry seasons, and interannual droughts)

Initial Drought:

reduces precip
reduces ET

Drought-induced 
Tree death



What is the Response to interannual drought?What is the Response to interannual drought?

empirical test: the intense 
Amazon drought of 2005



Blended precipitation product 
(3B43-v6) combines:  

- microwave data from TRMM

- Infrared from GOES

- Calibrated to data from 
global network of gauges

Methods I :  TRMM satellite for 
Rainfall measurements

TRMM = Tropical Rainfall 
Measuring Mission
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Methods I :  TRMM satellite for 
Rainfall measurements

Seasonal rainfall variations at 
local site (km 83, Tapajos)
show:

- Good monthly correlation 
between TRMM satellite and 
ground rain gauge (R2 = 0.7)
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Methods I :  TRMM satellite for 
Rainfall measurements

Seasonal rainfall variations at 
local site (km 83, Tapajos)
show:

- Good monthly correlation 
between TRMM satellite and 
ground rain gauge (R2 = 0.7)

- Rainfall variation a good proxy 
for surface (0-3m) soil moisture 
variation (maximum correlation 
at 1-month lag, R2=0.6)
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Methods I :  TRMM satellite for 
Rainfall measurements

Seasonal rainfall variations at 
local site (km 83, Tapajos)
show:

- Good monthly correlation 
between TRMM satellite and 
ground rain gauge (R2 = 0.7)

- Rainfall variation a good proxy 
for surface (0-3m) soil moisture 
variation (maximum correlation 
at 1-month lag, R2=0.6)

- Most models access 0-3m soil 
water, so show prompt (≤ 1 
month) response to drought



Methods II: MODIS satellite instrument measures 
canopy “greenness”

MODIS = Moderate Resolution Imaging 
Spectroradiometer

MODIS-derived Enhanced 
Vegetation Index (EVI):

focuses on spectral bands 
related to plant 
photosynthetic capacity 

Does not saturate with high 
Leaf Area Index (LAI) as does 
NDVI

High-time resolution (16-day) 
allows detection of  seasonal 
patterns
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↑ Chlorophyll

↓ reflectance

↑ leaf structure

↑ reflectance

aerosol 
correction

But… NDVI saturates over dense 
(high-LAI) vegetation (e.g. Amazon forest)

Reduced sensitivity to red, 
relative to NIR, giving greater 
ability to detect increases in 
LAI

Methods II: MODIS satellite instrument measures 
canopy “greenness”



Empirical test: the 2005 Amazon drought 



Satellite (TRMM)-derived precip anomalies in Amazônia for 2005 (as in Aragão, et al. 2007):
(relative to mean of 1998-2006)
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precipitation anomaly vegetation “greenness” anomaly

Units:  number of standard 
deviations in 2005 from the 
long-term mean for the 
July/Aug/Sept (JAS) quarter.  
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What is causing the 2005 drought “green-up”?

1. MODIS Artifact?

a) Water vapor/aerosol/other 
atmospheric contamination?

b) Cloud contamination?

c) Test by comparison to tower data

2. Biological response of the forest



(a) Water vapor/aerosol atmospheric correction

AVHRR 
Red

(.57 -.68)

AVHRR
NIR

(.72 – 1.0)



(a) Water vapor/aerosol atmospheric correction

- MODIS:  higher spectral 
resolution (relative to 
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(a) Water vapor/aerosol atmospheric correction

- MODIS:  higher spectral 
resolution (relative to 
previous generation 
AVHRR) dominant water 
absorption features no 
longer an issue

- Residual water vapor 
signal is removed by direct 
detection of water in 
dominant bands (MOD05 
algorithm)

- similar removal of other 
atmospheric contaminants 
(aerosol, O3, NOx, etc)

MODIS 
Red MODIS NIR 

(.84 – .88)

AVHRR 
Red

(.57 -.68)

AVHRR
NIR

(.72 – 1.0)

(.62 - .67)



(b) Cloud removal

MODIS:  high-accuracy cloud-detection, 
giving pixel-by-pixel cloud status:  clear, 
mixed, cloudy;  separate algorithm for 
cirrus (thin, high) clouds

Conservative approach to clouds:  

- Cloudy pixels excluded 

- Mixed pixels excluded

- Cirrus cloud pixels excluded

- Pixels adjacent to any cloudy, mixed or 
cirrus-cloudy pixels excluded

- similar detection/removal for cloud 
shadow

- similar detection/removal for 
medium/heavy aerosols (e.g. from fire)
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(c) Bottom-line test:  comparison to ground-
based tower measurements of GPP



Conclusion from tests and comparisons to 
ground measurements

(1) 2005 drought “green-up” is unlikely to be an 
artifact, but a real indicator of forest productivity

(2) Possible Biological causes:

a) more sunlight

b) Increase in diffuse:direct sunlight (due to more 
aerosols from increased fires caused by drought)  
(quantified in Aragao et al., 2007)



Summary Summary 
Amazon vegetation may be more resilient than 

ecosystem models predict, at least in the short 
term (seasonal variation and short droughts).

Forests have Adapted to dry seasons and short 
interannual drought, but biological adaptation is 
not represented in most ecosystem models

Caveats:  fire and long-term drought are serious 
threats to the future of the Amazon
(e.g. Amazon fires increased by a third during the 
2005 drought, Aragao et al., 2007)

Outstanding Question:  what does it take to “break” 
an Amazon forest?  Can climate change do it?  
What about the next big ENSO event?
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