Close Window

Leaf water O-18 enrichment (Delta(o)) influences the isotopic composition of both gas exchange and organic matter, with Delta(o) values responding to changes in atmospheric parameters. In order to examine possible influences of plant parameters on Do dynamics, we measured oxygen isotope ratios (delta O-18) of leaf and stem water on plant species representing different life forms in Amazonia forest and pasture ecosystems. We conducted two field experiments: one in March ( wet season) and another in September (dry season) 2004. In each experiment, leaf and stem samples were collected at 2-h intervals at night and hourly during the day for 50 h from eight species including upper-canopy forest trees, upper-canopy forest lianas, and lower-canopy forest trees, a C-4 pasture grass and a C-3 pasture shrub. Significant life form-related differences were detected in O-18 leaf water values. Initial modeling efforts to explain these observations over-predicted nighttime Delta(o) values by as much as 10%. Across all species, errors associated with measured values of the delta O-18 of atmospheric water vapor (delta(v)) appeared to be largely responsible for the over-predictions of nighttime Delta(o) observations. We could not eliminate collection or storage of water vapor samples as a possible error and therefore developed an alternative, plant-based method for estimating the daily average delta(v) value in the absence of direct (reliable) measurements. This approach differs from the common assumption that isotopic equilibrium exists between water vapor and precipitation water, by including transpiration-based contributions from local vegetation through O-18 measurements of bulk leaf water. Inclusion of both modified delta(v) and non-steady state features resulted in model predictions that more reliably predicted both the magnitude and temporal patterns observed in the data. The influence of life form-specific patterns of Delta(o) was incorporated through changes in the effective path length, an important but little known parameter associated with the Peclet effect

Close Window