Close Window

In the Brazilian Amazon, selective logging is second only to forest conversion in its extent. Conversion to pasture or agriculture tends to reduce soil nutrients and site productivity over time unless fertilizers are added. Logging removes nutrients in bole wood, enough that repeated logging could deplete essential nutrients over time. After a single logging event, nutrient losses are likely to be too small to observe in the large soil nutrient pools, but disturbances associated with logging also alter soil properties. Selective logging, particularly reduced-impact logging, results in consistent patterns of disturbance that may be associated with particular changes in soil properties. Soil bulk density, pH, carbon (C), nitrogen (N), phosphorus (P), calcium (Ca), magnesium (Mg), potassium (K), iron (Fe), aluminum (Al), ?13C, ?15N, and P fractionations were measured on the soils of four different types of logging-related disturbances: roads, decks, skids, and treefall gaps. Litter biomass and percent bare ground were also determined in these areas. To evaluate the importance of fresh foliage inputs from downed tree crowns in treefall gaps, foliar nutrients for mature forest trees were also determined and compared to that of fresh litterfall. The immediate impacts of logging on soil properties and how these might link to the longer-term estimated nutrient losses and the observed changes in soils were studied.In the most disturbed areas, roads and decks, the authors found litter biomass removed and reduced soil C, N, P, particularly organic P, and ?13C. Soils were compacted and often experienced reducing conditions in the deck areas, resulting in higher pH, Ca, and Mg. No increases in soil nutrients were observed in the treefall gaps despite the flush of nutrient-rich fresh foliage in the tree crown that is left behind after the bole wood is removed. Observed nutrient losses are most likely caused by displacement of the litter layer. Increases in soil pH, Ca, and Mg occur in areas with reducing conditions (decks and roads) and may result from Fe reduction, freeing exchange sites that can then retain these cations. Calculations suggest that nutrient inputs from crown foliage in treefall gaps are probably too small to detect against the background level of nutrients in the top soils. The logging disturbances with the greatest spatial extent, skids and gaps, have the smallest immediate effect on soil nutrients, while those with the smallest spatial extent, roads and decks, have the largest impact. The changes observed 3-6 months after logging were similar to those measured 16 yr after logging, suggesting some interesting linkages between the mechanisms causing the immediate change and those maintaining these changes over time. The direct impacts on soil properties appear less important than the loss of nutrients in bole wood in determining the sustainability of selective logging. Medium-to-low intensity selective logging with a sufficiently long cutting cycle may be sustainable in these forests.

Close Window