Close Window

The continuous fields Moderate Resolution Imaging Spectroradiometer (MODIS) land cover products are 500-m sub-pixel representations of basic vegetation characteristics including tree, herbaceous and bare ground cover. Our previous approach to deriving continuous fields used a linear mixture model based on spectral endmembers of forest, grassland and bare ground training. We present here a new approach for estimating percent tree cover employing continuous training data over the whole range of tree cover. The continuous training data set is derived by aggregating high-resolution tree cover to coarse scales and is used with multi-temporal metrics based on a full year of coarse resolution satellite data. A regression tree algorithm is used to predict the dependent variable of tree cover based on signatures from the multi-temporal metrics. The automated algorithm was tested globally using Advanced Very High Resolution Radiometer (AVHRR) data, as a full year of MODIS data has not yet been collected. A root mean square error (rmse) of 9.06% tree cover was found from the global training data set. Preliminary MODIS products are also presented, including a 250-m map of the lower 48 United States and 500-m maps of tree cover and leaf type for North America. Results show that the new approach used with MODIS data offers an improved characterization of land cover. (C) 2002 Elsevier Science Inc. All rights reserved

Close Window